DAT11b

Made in France.
Deal with it.

Rev 0.2

Table of contents

FA oo U D 7L I 1o SRR RPPR 5
Concepts and Preliminary NOTICESuii i e e s e e e sbreeessataeeesarreeasanes 5
[0 =1 T4 e o B PSSO S PP RSOSSN 6
= 0 <P PPPP 7
[aY o T0 L o =T o= T=q=T 0 0 1=] oL OO PPPTUPPPRPPPPRt 7
oY= =110 1 (o To T« B PUUPUUUU POt 7
Provided SraphiCs TYPES ..ueeiicuieie e ccieee ettt e e et te e e e e ta e e e esata e e e sbteeeesnbaeaesstaeeesstaeeeansaeeesnes 8
VBIanNK NaNAIEIS ... s et en e n 9
DY) Y] o1 =T o1 SRR ET 9

DAT VDIANKT Lottt ettt ettt e eeeeeeeeeeeeseeesesseee et eeesesaseeseseeeeeeeseseseseaseeseeaeeeseaeen seee 9

BT =T T =] o 0 o) PP PPPP 10
JOD MBLET .ttt b e bt st st st sttt et e te e seneeereens 11
L] oYU = 1o 1SRRI 11

Y oL = e Yo SRR 12
Lo L] L3 TSP U SRRSO 13
BUITACNAT ettt ettt e st e e st e e sabe e s bt e e sabeesabeesabaeeaabeesabe e teesabeesanes 13
(00 T2] L RSP 16
=1 0 =T PPN 17
FAN oY 4 g T o T PSPPSR OPPPP 18

(] o T A 4= 1T Yo ol IR 20
] T T e 1= T =R RSP 20
T o g aToTo [T [T o 1= USRS 20

JOD MELEN AEFINES ...ttt st st st st sttt as 20
INPUL Felated AEFINES coeiii et e e e e e e re e e e e s e e trte e e e e e sesantaaaeeeeseennnrnns 21
1T T Y TR T o] SRR 23
GeNeral PUIPOSE COMPONENTS.....ciiiiiiiieeiiieeeeeiieeeeeitteeeesteeeeetteeeesteeeesssteeeessteeessntaeeeessseseesseneeennsens 24
MEMBYTE, MEMWORD, MEMDW ORD.......ccciiiitittiteee ittt e ettt e e e e et e e e e e s eneneeeeeeeeeenane 24
VOIMEMBYTE, VOIMEMWORD, VOIMEMDW ORDcuttiiiiitiiiniieee ettt e s siee e siee e e 25
071 1o o] oV TSR 26
SCIPUL .ttt ettt e b e st s ae e st sttt et e r e e bt e bt e r e re e re e s ree e eneenees 27
SC2BAPUL ..ttt st st st ettt et e E et e e s bt e bt e eh e e nneeeneeeneeeaee eenneen 28

Lol 2T T S Dt =1 PR PSSRNE 29

Lol =TT oY o 1 L3 UPUU RO 30
(o] o] 111 @ HO O ST PPTOURRURPRUPRRPRPO 31

101) PSSR 33
J 1] o111 =T 6] o o PR 34
B[] o1V = =T S Y=L (T o RSP PURPPPN 35
T =Tl T e SR 36
SCCIOSE ettt ettt ettt e s et s e st e b e s b e e e b et e en e e e s b et e R et e e e e e s re e s reeesnree e ennneen 37
SEEUPAP ..ottt e et et e e e e et e et e e e eee e e et ta b aeeeeeeeeeaary aab s 38
UL a1 [0 =T I 11 e SRS 39
(T LAY] - [1 PP 40
PICTUNES COMPONENTES .. uutiiiiiiiiiiiiiiititii et e et et ettt et e te e et eeeeeeeeeaeteaeeeeeeeeeeeeaeeeeeeeeeeeasasesens 41
PICEUINE ettt e e s e s e e s a e sn e raee s 41
Y[t (01 <1 [o J S SRRRP 42
o1 (o1 (01 ¢=] [[T SURR 43
[T ot U1 /=] 1 | PP PO PPPPPPPPPPPPPR 44
PICTUIEIMIOVE ...ttt et et et e ee e et eeeeeaeeaaaeeeeaaeaeeeaeananesnan 45
[T [o1 (0T Y=Y o o [T TSRS 46
PICTUIESETPOS ... e e teee e et e eeeeeeee e e e e e e e e e e eesesseeaeseseseeeeeaeeaeaeasaaeraraaaeaeees a7
(01Tt A B oY o 1 YRS 48
Yol fo] 1T S oloT 1Y oo T 01T 21 £ USSP 49
Yol o] 1 =T o PP PRRPRROPPTRPRI 49
Yol g0 | 1= 4 T (o O TS US P OPRTUPPTOPIINN 50
SCIOIIEIINIT...eeeee ettt sttt ettt e e bt e e sat e e sabeesbe e e sabeesabeesabeeeabeesabaesatee nreenns 51
SCIONEISEEIPOS ...ttt ettt r e b e st s s s s et 52
Animated SPrites COMPONENTSeiiiiciiiee e ccteee et e e eere e e st e e e etteeeesbaeeesartaeeesbteeesantaeessasseeesanes 53
A P 1o ———.aatataaaees 53
spritelnfo, animation, animStep, SPIrFrAMEcciii it rree e e e e e aneaes 54
N o] g1 0=T A 1] ¢ 1= AU PPPPPPIRN 55
F= Y o1 1 7= S LT« TSRS 56
IS 0 1 =] 1T = SRR 57
F= Y o =] [PSR 58
ASPIIEEIMOVE .. e ————————————————————————————————————. 59
N 1 g1 =R =L AN o 1 o o PR PPPPRTPPINN 60
A PO B P OS . i —————————————————————————. 61
oY 0 1Y o 1Y PRSP 62
SPIite POOIS COMPONENTS...cciiiiieiiiiiieee et cctre e e e e e ee et ee e e e e e esabtaaeeeeeeeesnsraaaeaeeesannssraneeasenans 63
] oY1 =] 2 Yo | PR 63

Ry o] 1] ad Yo] [T Ty R

] oYL =] ade Yo 1 B = 1V I R UU

spritePoollnit

About DATIib

DATIib is a library designed for the NeoBitz/NeoDev environment.
It is designed to replace libvideo and libinput from the original kit.

Its goal is to provide easy functionality trough base elements (scroller, picture and animated sprite)
which you are prone to use in your software, and allow better performance than basic libraries while
writing less code.

Tools are also improved over standard ones to allow more colors (nho longer limited to one palette per
object), auto animation support, smaller data...

Combined tools and library allow easier coding while providing better performance and easy syncing
between vblank and sprites update, greatly reducing tearing issues.

Concepts and preliminary notices

First of all, there is a quick demo program provided in the archive with source code, which you can
explore and play along with to get familiar with the library and tools, or use as a stepping stone for your
project.

DATIib will occupy about 10KB of the system ram.

The main outline of how this library works is that graphic updates are queued into buffers (also called
draw lists / command queues) that are processed during vblank. There is currently three command
gueues: tiledata queue (SC1 buffer, VRAM 0x0000 — 0x6FFF operations), sprites control queue (SC234
buffer, VRAM 0x8000- 0x85FF operations) and palette jobs queue (palette ram operations). This means
you can -for example- update a sprite position anywhere in your code, it will automatically be synced
with and updated during next vblank.

Many components of this library evolve around the concept of base sprite and base palette:

Base sprite designates the starting sprite to use for said element. As an example a 4 tiles width picture
with base sprite set to 10 will therefore use sprites #10 #11 #12 #13 to display.

Base palette is basically the same concept as base sprite, applied to color palettes.

It is currently up to the user to manage sprites and palettes to make sure no overlaps occurs across
different elements.

Installation

Requirements: main NeoBitz dev package is required, make sure it is correctly installed and set up.

Copy the designated files from the archive to their destination directory.

File Destination
lib/DATIib.h from your NeoDev install directory, m68k/include/
lib/input.h from your NeoDev install directory, m68k/include/

(backup previous version if you want to keep it for some reason)
lib/libDATIib.a from your NeoDev install directory, m68k/lib/
bin/Animator.exe Put those in a known path folder like m68k/bin/, or
bin/BuildChar.exe create a new directory and add it to your path variable.

bin/NeoTools.dll
bin/CharSplit.exe
bin/Framer.exe

DATIib is designed to supersede libvideo and libinput, make sure your remove those from your linker
options in your project makefile and add DATIib library (remove -1video and -1input, add -1DAT1ib).

IE:
LIBS

-lvideo -linput -1lprocess -1lc -lgcc
becomes
LIBS

-1DAT1ib -1lprocess -1lc -1lgcc

Add <input.h> and <DAT1ib.h> in your program includes.
If you use BuildChar to convert your data into tilemaps (most likely you will), also add “externs.h” to your
project.

Use the provided common_crt@_cart.s and crt@_cart.s file for your project, replacing older ones.
(common_crt@ _cd.s and crt@_cd.s for CD projects).

Features

Input management

As standard 1ibinput is dropped when installing DATIib, input defines are provided in the new input.h
include file. Values can be read with the volMEMBYTE () macro.

Support is provided for mahjong controllers as well as 4P adapters, check library reference section for
available defines.

Example:

#include <input.h>

BYTE p1;
pl=volMEMBYTE(P1_CURRENT); /* get current status of P1 */
if(pl&IOY_A) { /* button A pressed ? */

, ..

Program loop

Using the library requires using a defined program flow for everything to work together.

While there are many ways to arrange code and use functionalities, here is a sample, basic program
loop:

initGfx(); //initialize library components
/* initialize scroller, pictures etc.. */
SCClose(); //we done initializing

while(1) {

wait_vblank(); // wait vblank
// screen updates will occur during vblank

/* do stuff */

SCClose(); //we done updating stuff
//loop for vblank sync and screen update

Provided graphics types

DATIib provides three base graphical elements that should fulfill most needs:

picture

- simple picture type

- allows display, positioning and flipping of static pictures

- when setting picture position, you are setting top left pixel position

- uses picture tile width sprites (ie: 64px width picture = 4 tiles width = 4 used sprites)
scroller

- type used to display a scrolling plane

- 8 way scrolling ability

- no map size limit

- uses 21 sprites, regardless of plane dimensions

animatedSprite

- provides support for animated sprites

- allow display, positioning, flipping and animating sprites

- animation system supports repeats and animation linking

- up to 65536 animations, unlimited animation steps

- used sprites depends on currently displayed frame, good practice is to plan enough sprites
to fit the widest frame

Note: Animated sprites uses a different way to position themselves. Each frame location is relative to a
fixed reference point. This is due to the nature of animations, often using a set of frames of different
sizes and alignments (to avoid encasing a few pixels in a large picture frame, saving space and CPU
time). Positioning operations on animated sprites refer to positioning the reference point. Flipping
animated sprites is done around the reference point.

Vblank handlers

Vblank handlers are interrupt handlers provided by the library, required for proper operation. Those have
to be set up as your vertical interrupt (IRQ2) vector.

DAT_vblank

Standard vblank handler.
Operation:

- sets job meter to red

- process tiledata queue

- process sprites control queue

- process palette jobs queue

- sets job meter to orange

- resets draw lists, updates frame counter

- checks and process debug dips

- acknowledges IRQ, kicks watchdog, calls SYSTEM_IO (BIOS)
- sets job meter to green

- returns

Note: Job meter colors are only updated under select circumstances, see debug dips section.

DAT_vblankTI

Vblank handler with timer interrupt support.
Operation:

- Load base and reload timing values (if timer interrupt enabled)
- Branch to DAT_vblank for standard operations

Note: When using timer interrupts, requested LSPC mode must be written to the LSPCmode variable
(WORD). This is due to the LSPC mode hardware register being manipulated to set timer values,
therefore needing a reference value of requested settings to preserve them. If using standard vblank
handler you can ignore the LSPCmode variable and write directly to the register.

Timer interrupt

Base functionality is provided for timer interrupts, allowing to change one or two VRAM value on every
(or select set of) scanline.

To enable timer interrupt functionalities:

- setDAT_vblankTI as your vblank IRQ vector
- setDAT_TIfunc as your timer IRQ vector

Notes: make sure you set variable TinextTable (DWORD) to 0 before enabling IRQ when using timer
interrupt. This is done in the default init code, but make sure to keep it if customizing files. Timer interrupt
related code uses the USP register, make sure you code doesn’t conflict.

Using timer interrupt:

To work with timer interrupt you need to prepare data in a WORD table, storing VRAM address and data
combos.

Format for the data table is:

- VRAM address n (1 WORD)

- VRAM data n (1 WORD)

- VRAM address n+1 (1 WORD)

- VRAM data n+1 (1 WORD)

- (etc...)

- end marker (2 WORD, 0x0000 0x0000)

For correct behavior it is required to use two alternating tables. One table for currently displaying frame,
another one to prepare data for next frame.

Timer IRQ function must be set up with 1oadTIirq() prior to use.

Timer IRQ is available for single and dual data writes for each triggering. See loadTIirq() section.

Startup timer interrupt:

- set base and reload timers
- put pointer to data table for next frame in the TinextTable variable

Stop timer interrupt:

- set TInextTable to null (0)

Notes: When data last value is processed, the timer interrupt will be disabled for the rest of the frame
until next vblank. This avoids triggering unnecessary IRQ, as they are CPU consuming. Default timer
values are provided for first raster line triggering and each line repeat: TI_ZERO and TI_RELOAD. Timer
interrupt will be disabled if TinextTable is null. Timer interrupt will be disabled if first table entry is end
marker.

10

Job meter

Base job meter support is provided by the library.

Job meter allows basic profiling of your code, by having a visual representation of how much CPU time
is used. Using different colors lets you observe CPU usage of every procedure, allowing targeting of
things to optimize.

Job meter example:

Green color: free CPU time

Blue color: animation procedures

Red color: vblank sprites updates
Orange color: post vblank SYSTEM 10

Note: Setting job meter colors during active display will issue a pixel of said color on screen (on real
hardware). This is an issue with the hardware that can’t be avoided, therefore make sure to use job
meter in debug builds only.

Debug dips

Some of DATIib features are enabled through debug dips. Enable dev mode into bios then set the
requested dips to 1.

- debugdip 2-1
Enable vblank job meter color updates.
Vblank interrupt will color draw queues as red job, and post jobs, like SYSTEM_IO, in orange.

- Debug dip 2-2
Displays current raster line # when draw queues are done being processed.

- Debug dip 2-3
Displays a rough usage meter for SC1 and SC234 buffers

- Debug dip 2-4 ~2-8
Unused / reserved future use.

11

Sprite Pools

Sprite pools are an alternate way to handle sprites rendering. It consists of a reserved sprites batch
which is then used to display assets.

It differs for the classic, “allocated” draw mode by many ways:

- Sprite tilemap/position data is written during active frame, alleviating vblank load

- Sprite tilemap/position data is fully rewritten every frame

- Removes the need to manage baseSprite from assets, they are drawn in the order they are
submitted

- Submit order drawing allows for easier sprites sorting/priority change.

- No baseSprite management means less sprite loss, when current frame is smaller than the
reserved space

Base operation sketch

A spritePool entity must be initialized providing a pool size (# of sprites) and a starting position for
this pool (baseSprite). Pool size should be aimed at twice the size of an average scene. If an average
frame requires 80 sprites, allocate 160.

To draw into the sprite pool, user must submit an array of pointers to aSprite entities, followed by a
null pointer end marker.

Drawing in the sprite pool alternates way every frame (WAY_UP/WAY_DOWN). When going UP, pool
uses sprites from pool start toward pool end, when going DOWN, from pool end toward pool start.
User must supply the top or bottom end of the pointer array, to fit needs.

Tilemap and X position data is written into vram during active display, Y position is updated during
vblank.

In case of heavy load, it is possible the sprite needs overlaps with the currently used sprites from
previous frame. In this case overlapping sprite needs are queued for update during next vblank:

frame N used sprites (currently on screen, DOWN way)
frame N+1 sprites, drawn immediately (UP way)

- frame N+1 overlapping sprites, queued for vblank drawing

This provides a failsafe and user transparent operation in most scenarios, only way to currupt visuals
would be for a single frame to exceed the total size of the sprite pool.

Note: As sprite pools are designed to update VRAM during active frame, this feature isn’t interrupt
safe (using it alongside timer innterrupt can corrup VRAM info).

12

Tools

Buildchar

Command line tool used to convert your graphics elements into tiles, tilemaps and palettes.

Input
- chardata.xml

Contains description of assets to include into tile data.

Example chardata.xml file:

<?xml version="1.0" encoding="UTF-8" ?>
<chardata>
<setup>
<starting_tile fillmode="dummy">256</starting_tile>
</setup>

<scrl id="ffbg _b">
<file>gfx\ffbg_be.png</file>
<autol>gfx\ffbg_bl.png</autol>
<auto2>gfx\ffbg_b2.png</auto2>
<auto3>gfx\ffbg_b3.png</auto3>
</scrl>

<pict id="ffbg c">
<file>gfx\ffbg_c.png</file>
<flips>xyz</flips>

</pict>

<sprt id="bmary_spr">
<file>gfx\bmary.png</file>
<flips>xyz</flips>
<frame>0,0:4,7</frame>
<frame>4,0:4,7</frame>
<frame>8,0:4,7</frame>
<frame>12,0:4,7</frame>
<frame>16,0:4,7</frame>
<frame>20,0:4,7</frame>
<frame>24,0:4,7</frame>
<frame>28,0:4,7</frame>
<frame>32,0:4,7</frame>
<frame>36,0:4,7</frame>
<frame>40,0:4,7</frame>
<frame>44,0:4,7</frame>

</sprt>

</chardata>

Nodes details:

0 <setup>
Contains general settings:

o <scrl>

<starting_tile>

Defines starting tile # (decimal). Used to leave blank tiles at the beginning
of the char.bin file, useful if you need room to fit things like a character font
at the beginning of the tileset. Additional parameter fillmode (none/dummy)
defines if skipped tiles are to be filled or not.

<charfile>

Defines output character file name. Optional, defaults to “char.bin”.
<mapfile>

Defines output tilemaps data file name. Optional, defaults to “maps.s”.
<palfile>

Defines output palettes data file name. Optional, defaults to “palettes.s”.
<incfile>

Defines output include file name. Optional, defaults to “externs.h”.

Used to declare a scroller

0 <pict>

id (attribute)

Literal name the scroller will be referenced by in C code.
<file>

PNG file of the display area.

<autol> to <auto7>

Additional pictures when using auto animation features.

Used to declare a picture

0 <sprt>

id (attribute)

Literal name the picture will be referenced by in C code.
<file>

PNG file of the picture.

<flips>

Flip modes wanted for this picture (optional).

X = horizontal flip

Y = vertical flip

Z = horizontal & vertical flip

Used to define an animated sprite

id (attribute)

Literal name the animated sprite will be referenced by in C code.
<file>

PNG file containing all animation frames.

<flips>

Flip modes wanted for this animated sprite (optional).

X = horizontal flip

Y = vertical flip

Z = horizontal & vertical flip

<frame>

Defines a frame, format is: top,left coordinate:width,height
Unit is tile (16px)

See Framer tool section to easily set up frames

14

About input files format:
Picture files used in chardata.xml must be PNG format, 32bppArgb. Define transparency by pink color
(#ffOOff), or simply use transparency. Size must be multiples of 16.

About colors:

There is no limits color wise, as long as each tile is transparency + 15 colors max, you can use pics with
hundreds of colors.

If your file is rejected for using too many colors per tile, erroneous tiles will be shown in a reject.png file.

About ID:
Each declared entity will generate an extern C object named <id>, as well as a palettes object named
<id>_Palettes.

Output

- char.bin
Your tile data, linear binary output.
Convert to cart or CD format if needed by using the CharSplit tool.

- maps.s
Tilemaps data, add to makefile to compile and link into your project.

- palettes.s
Palettes data, add to makefile to compile and link into your project.

- externs.h
Extern definitions of your data. Include into your C program to use data.

Mixing auto4 and auto8 tiles

It is possible to mix up auto4 and auto8 tiles on the same file when using auto animation. To do so, use
the supplied auto4 marker tile (auto4 _tile.png) on your <auto4> file to designate an auto4 tile.

Tile distribution across mixed up files is as follow:

<file> | <autol> | <auto2> | <auto3> | <auto4> | <auto5> | <auto6> | <auto7>
End

Auto4 Tile #0 Tile #1 Tile #2 Tile #3 ---- Ignored data ----
marker

Auto8 Tile #0 Tile #1 Tile #2 Tile #3 Tile #4 Tile #5 Tile #6 Tile #7

15

Charsplit

Command line tool used to convert raw character data issued by buildchar to either cart or CD format

files.

Usage:

charSplit [input_file] <options> [output_file_prefix]

Options:
-cart Ouput to cart format ([output_file prefix].cl & .c2)
-cd Output to CD format ([output_file prefix].cd)
Example:

charsplit char.bin -cart game

will convert split char.bin into game.cl and game.c2 files for cart system use.

16

Framer

Tools used to delimit animated sprites frames.
Each animated must be assigned a set of frames before being processed by the buildchar tool.

Input
- chardata.xml
Click the open button and select the xml file containing reference to your animated sprites
assets.
Output
- chardata.xml
Click the save button to update xml file with the new/updated frames.
Usage:
'. C:\NeoDe\DATdemo \chardata.xml - DATIib's Framer [E=EEER)
[& Scale: 100% -y
+ Sprites
[bmary_spr ']
Frames - bmary_spr
pos X pos Y width height o
32 0 4 7
36 0 4 7
40 0 4 7
44 0 4 7
0 7 4 7 F
4 7 4 7
8 7 4 7
12 7 4 7
15 7 4 7 3
20 7 4 7
24 7 4 7
28 7 4 7 i
| e]
Masle color - r U
I Frame color - - U
4 n 3

Framer is very straightforward to use. Open your xml file, then select the animated sprite you want to
work with from the drop down menu.

If the xml file already contains data, existing frames will be listed to be updated/removed.

To add a new frame, simply select it by clicking and dragging mouse, then click the add button, or
press the space bar.

When done, click save to update the xml file, which is then ready to use with buildchar for processing.

17

Animator

Tool used to animate animated sprites.

Each animated sprite you process with the buildchar tool must be assigned at least one animation with
the animator tool for proper compilation and linking of your project.

Input

When defining an animated sprite, buildchar will output a subfolder containing frames cutouts. Open

this folder in Animator.

- animdata.xml

This is your save file regarding this animation. If found inside folder, animator will load it.

Output

- animdata.xml

This is your save file regarding this animation. Hit save button to save your work.

- <id>_anims.s

Animations file, this should already be an include in your maps.s file by buildchar tool.

- <id>.h

Contains animations C defines, should already be included in your externs.h by buildchar tool.

Using Animator:

Main window is divided into 3 areas

m

-
% C:\NecDev\DATdemo_‘\gfix\bmary_spr - DATIib's Animator l — i
& & | Scale: 400% - & &
o Sprite data
o bmary_spr_0003 » | Frame details
bmary_spr_000a
bmary_spr_000b =] Width: 64 px (4 tiles)

Height: 112 px (7 tiles)

Animations | Steps - IDLE |

IDLE

WALK

Animation details

ID: BMARY_SFR_ANIM_IDLE

Steps: 12

Total timing: 72 frames

Repeats: 0 ftimes played = 1 + repeats)
Linksto: |IDLE b

-]

Play repeats / links
Playback loop

[2)
©

18

@ Preview area

This area allows you to visually align frames and preview animations. Change scale for better viewing.
Reference point is visualized by the intersection of the two red axes. When setting position of
animated sprites in your code, you are setting the position of this reference point.

@ Sprite and frames data area

This area will list and provide a quick preview of all the frames you created using the framer and
buildchar tools, making sure you exported them correctly.

© Animations area
This is the main section to edit and check animations

Adding an animation: Input animation name in text field and press the [Add] button, the new animation
will appear in the animations list.

Edition an animation: Select the animation you want to edit in the animations list. Input repeat count and
link data for selected animation. Repeats are the number of times the animation will be repeated after
initial play. Link allows you to branch to another animation once current animation is done displaying
(including repeats). You can link an animation to itself to create a loop. If no link is selected the last
animation frame will remain of screen after animation is done.

From there on, double click on frames in frames list to add animation steps.

You will have to input frame position for each step (X & Y field, or arrow buttons) as well as step timing
(T field). Timing is the number of display frames the selected step remains on screen. Mod all steps
checkbox will allow you to edit all steps at the same time.

You can adjust steps order or delete steps by using buttons under the steps list.

Animations IDs

Each animation created with the animator tool will generate a C define that can therefore be used when
setting animations.

Format is <id>_ANIM_<animation name> (all uppercase).

As an example, building animations named WALK and IDLE for animated sprite defined with ID
“mycharacter” will generate MYCHARACTER_ANIM_WALK and MYCHARACTER_ANIM_IDLE defines.

Exporting data

Use the [Export] button in the toolbar to export animation data into your project for compilation/linking.

Keyboard shortcuts

Shift + arrow keys: move currently selected step
Space bar: start/stop current animation playback

19

Library reference

Library defines

Flip modes defines

Flip modes used for graphical elements to define orientation.

Flip modes

FLIP_NONE
FLIP_X
FLIP_Y
FLIP_XY
FLIP_BOTH

Job meter defines
Colors used for job meter

Colors

unflipped

horizontal flip

vertical flip

horizontal and vertical flip
horizontal and vertical flip

JOB_BLACK
JOB_WHITE
JOB_RED
JOB_GREEN
JOB_BLUE

JOB_PURPLE

JOB_CYAN

JOB_YELLOW
JOB_ORANGE

JOB_PINK

black color
white color
red color
green color
blue color
purple color
cyan color
byellow color
orange color
pink color

20

Input related defines
Defines used to read controller data and check button presses.
All data registers are byte size.

Hardware registers

P1_HW
P2_HW

Bios registers

hardware controller port 1 (negative logic)
hardware controller port 2 (negative logic)

P1_STATUS player 1 status

P1_PAST player 1 previous frame data
P1_CURRENT player 1 current data
P1_EDGE player 1 active edge data
P1_REPEAT player 1 repeat data

P1 TIMER player 1 repeat timer
P2_STATUS player 2 status

P2_PAST player 2 previous frame data
P2_CURRENT player 2 current data
P2_EDGE player 2 active edge data
P2_REPEAT player 2 repeat data

P2 _TIMER player 2 repeat timer
P1B_STATUS player 3 status

P1B_PAST player 3 previous frame data
P1B_CURRENT player 3 current data
P1B_EDGE player 3 active edge data
P1B_REPEAT player 3 repeat data
P1B_TIMER player 3 repeat timer
P2B_STATUS player 4 status

P2B_PAST player 4 previous frame data
P2B_CURRENT player 4 current data
P2B_EDGE player 4 active edge data
P2B_REPEAT player 4 repeat data
P2B_TIMER player 4 repeat timer
PS_CURRENT current select/start data
PS_EDGE active edge select/start data

Controller types (status byte value)

CTRL_NOCONNECT not connected
CTRL_STANDARD standard controller
CTRL_EXPANDED expanded controller (4P mode)
CTRL_KEYBOARD keyboard

CTRL_MAHJONG mahjong controller

21

Controller positions

JOY_UP
JOY_DOWN
JOY_LEFT
JOY_RIGHT
JOY_A
JoY_B
JOY_C
JOY_D

P1_START
P1_SELECT
P2_START
P2_SELECT
P1B_START
P1B_SELECT
P2B_START
P2B_SELECT

lever up
lever down
lever left
lever right
A button
B button
C button
D button

player 1 start button (select/start register)
player 1 select button (select/start register)
player 2 start button (select/start register)
player 2 select button (select/start register)
player 3 start button (select/start register)
player 3 select button (select/start register)
player 4 start button (select/start register)
player 4 select button (select/start register)

Mabhjong controller related

P1_JONG_A G
P1_JONG_H_N
P1_JONG_BTN

P2_JONG_A_G
P2_JONG_H_N
P2_JONG_BTN

JONG_A
JONG_B
JONG_C
JONG_D
JONG_E
JONG_F
JONG_G
JONG_H
JONG_I
JONG_J
JONG_K
JONG_L
JONG_M
JONG_N
JONG_PON
JONG_CHI
JONG_KAN
JONG_RON
JONG_REACH

player 1 mahjong data, A-G buttons
player 1 mahjong data, H-N buttons
player 1 mahjong data, action buttons

player 2 mahjong data, A-G buttons
player 2 mahjong data, H-N buttons
player 2 mahjong data, action buttons

A button

B button

C button

D button

E button

F button

G button

H button

| button

J button

K button

L button

M button

N button
PON button
CHI button
KAN button
RON button
REACH button

22

Library variables

General variables

DWORD DAT_frameCounter frame counter

DWORD DAT_droppedFrames dropped (skipped) frames counter
DWORD SC1[760] draw list for tilemap data

WORD *SClptr pointer to tilemaps data draw list
WORD SC234[2280] draw list for sprite control

WORD *SC234ptr pointer to sprites control draw list
DWORD PALJOBS[514] palette jobs queue

WORD *palJobsPtr; pointer to palettes jobs queue

Timer interrupt related variables

WORD LSPCmode requested LSPC mode

DWORD TIbase timer interrupt timing to first trigger
DWORD TIreload timer interrupt reload timing

WORD* TInextTable pointer to data table to use next frame
WORD Tivalues@[256] timer interrupt data space 0

WORD TIvalues1[256] timer interrupt data space 1

23

General purpose components

MEMBYTE, MEMWORD, MEMDWORD

Direct memory access macros.

Syntax
MEMBYTE(address)
MEMWORD(address)
MEMDWORD(address)

Explanation
Macros that can be used to directly access a memory address or hardware register.
Available for byte, word and dword operation.

Ex:
i=MEMWORD (©x3c0006) ; /* reads LSPC mode register into i */

MEMBYTE (0x300001)=1; /* kicks watchdog */

Note: 68000 requires even addresses when operating on word and dword (long) data. Read/write
operation at an odd address for a word/long will crash the CPU.

Return value
N/A

24

voIMEMBYTE, voIMEMWORD, voIMEMDWORD

Direct memory access macros, volatile declaration.

Syntax
vOoIMEMBYTE(address)
vOoIMEMWORD(address)
voIMEMDWORD(address)

Explanation

Macros that can be used to directly access a memory address or hardware register.
Available for byte, word and dword operation.

Theses macros are defined with the volatile keyword.

Ex:
i=volMEMWORD(0x3c0006); /* reads LSPC mode register into i */

VO1MEMWORD(0x300001)=1; /* kicks watchdog */

Note: 68000 requires even addresses when operating on word and dword (long) data. Read/write
operation at an odd address for a word/long will crash the CPU.

Return value
N/A

25

palJobPut

Writes to palette jobs queue. Macro.

Syntax

palJobPut(

BYTE number Destination palette number (0-255)
BYTE count Number of palettes to write
WORD* data) Pointer to palette data start
Explanation

Macro allowing user to put palette jobs on palettes queue.

Return value
N/A

26

SC1Put

Writes to the tilemap data draw queue. Macro.

Syntax

SC1Put(

WORD addr Destination address in VRAM
BYTE size Tile count

BYTE pal Base palette

WORD* data) Pointer to tilemap data
Explanation

Macro allowing user writes into the tilemap data draw queue (VRAM sprite control block 1).

Maximum size is 32 tiles.

Return value
N/A

27

SC234Put

Writes to the sprite control draw queue. Macro.

Syntax

SC234Put(

WORD addr Destination address in VRAM
WORD data) Data

Explanation

Macro allowing user writes into the sprite control draw queue (VRAM sprite control blocks 2 3 & 4).

Whilst designed for sprite control, the usage can be expanded to write a WORD data to any VRAM
address.

Return value
N/A

28

clearFixLayer

Clears fix layer.
Syntax
void clearFixLayer();

Explanation

Clears the display fix layer.

Clearing is done witth tile 0xOff, palette 0x0, make sure it is transparent in your fix data.
clearFixLayer totally wipes the fix data, unlike bios FIX_CLEAR function which leaves black bars.
Note: this function operates immediately, not on next vblank.

Return value
N/A

29

clearSprites

Clears a set of sprites.

Syntax

void clearSprites(

WORD spr, First sprite to clear

WORD count) Number of sprites to clear, from starting sprite
Explanation

Clears a block of sprites from spr to spr+count-1.
Sprite clearing is done by unlinking it, setting a 0 size and position it offscreen. Tiledata isn't affected.

Return value
N/A

30

disablelRQ

Disables IRQ on the system.

Syntax
void disablelRQ()

Explanation

IRQ will no longer be triggered after calling this function.

Disables both IRQ1 and IRQ2.

Return value
N/A

31

enablelRQ

Enables IRQ on the system.

Syntax
void enablelRQ()

Explanation

IRQ will be active after calling this function.

Enables both IRQ1 and IRQ2.

Return value
N/A

32

initGfx

Initialize the library for graphics operations.

Syntax
void initGfx()

Explanation

Resets and sets up library for operation.

Calling this function is required before using the library.

The function notably resets frame counters and unloads timer interrupt function.

Return value
N/A

33

jobMeterColor

Changes current jobmeter color.

Syntax
void jobMeterColor(
WORD color) Requested color

Explanation

Macro used to change job meter color to differentiate code segments execution timing.

Return value
N/A

34

jobMeterSetup

Sets up the job meter.

Syntax
void jobMeterSetup(
BOOL setDip) Automatic soft dip setting

Explanation

Draws the job meter of the fix layer, using fix tile 0x000 and palette Oxf. Make sure that tile is a plain
color #1 tile in your fix data for proper display.

Job meter takes place on the far right column of the fix layer.

For the job meter to be updated during vblank, devmode and soft dip 2-1 must be on.

Call function with setDip parameter set to true for the function to force devmode and soft dip 2-1 to on.
This basically saves you from enabling them again manually on each boot.

Note: Forcing bios setting is kind of a hack job, it isn’t guaranteed to work on all bios (tested ok on
debug bios and uinibios 3.2), try out and use accordingly. Do not use in release code.

Return value
N/A

35

loadTlirg

Loads timer interrupt handler.

Syntax
void loadTlirq(
ushort mode) IRQ mode

Explanation
Loads the required code to process the timer interrupt.

Two modes are available:
- TI_MODE_SINGLE_DATA: One VRAM change per interrupt
- TI_MODE_DUAL_DATA: Two VRAM changes per interrupt

Return value
N/A

36

SCClose

Readies draw data for display.

Syntax
void SCClose()

Explanation
Closes draw lists and prepare system for next vblank.

SCClose will allow draw lists to be processed upon next vblank and therefore need to be called before
wait_vblank, or the library won't update display and will issue a frameskip.

Return value
N/A

37

setup4P

Initialize 4P input mode.

Syntax
int setup4P()

Explanation
This function will check if a 4P adapter (NEO-FTC1B / NEO-4P) is hooped to the system.
It should enable 4 players mode on any bios if hardware is found.

Return value
0 - adapter could not be found
1 - adapter was found

38

unloadTlirq

Unloads timer interrupt handler.

Syntax
void unloadTlirg()

Explanation
Unloads the required code to process the timer interrupts.

This actually loads a failsafe handler (acknowledge IRQ then return), shall a timer interrupt occur when
unexpected.

Note: make sure you set TinextTable to O, then wait for a VBlank to occur before using
unloadTIirq() to avoid unstable behavior.

Return value
N/A

39

wait_vblank

Waits for next vblank.

Syntax
void wait_vblank()

Explanation
Holds program execution until next vblank is triggered.

Program will resume after the vblank function has been processed.

Return value
N/A

40

Pictures components

Picture

Runtime handler for a picture.

Syntax

typedef struct Picture {
WORD baseSprite;
WORD basePalette;
WORD posX;
WORD posY;
WORD currentFlip;
picturelnfo* info;

} Picture;

Explanation

Base sprite # used for this picture

Base palette # used for this picture

Current position, X axis

Current position, Y axis

Current flip mode.

Pointer to the picturelnfo struct of this picture

This is the base structure the library uses to handle picture type elements.
Has to be allocated in the ram section of your code.

As operation on this datatype is managed by the library, it is strongly advised to use as read only in your

code.

41

picturelnfo

Structure holding picture information.

Syntax

typedef struct picturelnfo {
WORD colSize;
WORD unused__height;
WORD tileWidth;
WORD tileHeight;
WORD* mapsl[4];

} picturelnfo;

Explanation

Words size of each sprite tilemap (basically tileHeight*2)
Legacy field, unused/reserved future use

Picture width, tiles unit

Picture height, tiles unit

Pointers to tilemaps (standard, flipX, flipY, flipXY)

picturelnfo structures are generated by the buildchar tool. Holds basic info about the picture.

Tilemap pointers are always valid. |E if you did not request flipX for that picture, maps[1] will point to the

standard map.

Picture tilemaps size (WORD) is (tileWidth*tileHeight)*2.

42

pictureHide

Hide a picture.
Syntax

void pictureHide(
Picture* p) Pointer to picture structure to use

Explanation

Removes designated picture element from display.

Note: As hiding is done by altering Y position and sprite size, please be aware that changing Y pos of
designated picture will revert it back to visible.

Return value
N/A

43

picturelnit

Initialize a Picture structure for use.

Syntax

void picturelnit(

Picture* p, Pointer to Picture structure to use
picturelnfo* pi, Pointer to picturelnfo structure

WORD baseSprite, Base sprite # to use
BYTE basePalette, Base palette # to use

short posX, Picture initial X position
short posY, Picture initial Y position
WORD flip) Picture initial flip mode
Explanation

Initialize and prepare a Picture element for use.
Picture will be set up with provided initial position/flip.
Will reset related sprites shrink factor to OxOfff (full size).

Return value
N/A

44

pictureMove

Updates position of a picture.

Syntax

void pictureMove(

Picture* p, Pointer to Picture structure to use
short shiftX, New X position

short shiftY) New Y position

Explanation

Change picture screen position.

New position is determined relatively to current position (new pos= current pos + shift).

Return value
N/A

45

pictureSetFlip

Sets flip mode of a picture.

Syntax

void pictureSetFlip(

Picture* p, Pointer to picture structure to use
WORD flip) Desired flip mode

Explanation

Change picture flip mode.
Flip modes most be specified in your chardata.xml file for the buildchar tool to make them available.
Will default to base orientation if requested flip mode isn’t available.

Return value
N/A

46

pictureSetPos

Sets position for a picture.

Syntax

void pictureSetPos(

Picture* p, Pointer to Picture structure to use
short toX, New X position

short toY) New Y position

Explanation

Change picture screen position.
Position is set to supplied values.

Return value
N/A

47

pictureShow

Show a picture.

Syntax
void pictureShow(
Picture*p) Pointer to picture structure to use

Explanation
Put back a previously hidden picture on display.
Picture will be displayed at latest set position with latest set flip.

Return value
N/A

48

Scrollers components

Scroller

Runtime handler for a scroller.

Syntax
typedef struct Scroller {
WORD baseSprite; Base sprite # used for this scroller
WORD basePalette; Base palette # used for this scroller
WORD colNumber[21]; Internal use
WORD topBk, botBk; Internal use
WORD scrlPosX; Current scroll index, X axis
WORD scrlPosY; Current scroll index, Y axis
scrollerinfo* info; Pointer to the scrollerinfo struct of this scroller
} Scroller;
Explanation

This is the base structure the library uses to handle scroller type elements.
Has to be allocated in the ram section of your code.

As operation on this datatype is managed by the library, it is strongly advised to use as read only in your
code.

49

scrollerinfo

Structure holding scroller information.

Syntax
typedef struct scrollerinfo {
WORD colSize; Words size of each sprite tilemap (basically mapHeight*2)
WORD sprHeight; Required sprite height to use (max 32)
WORD mapWidth; Scroller width, tiles unit
WORD mapHeight; Scroller height, tiles unit
WORD map|0]; Tilemap data (size varies)

} scrollerinfo;

Explanation
scrollerinfo structures are generated by the buildchar tool. Holds basic info about the scroller.

Actual map size (WORD) is (mapWidth*mapHeight)*2.

50

scrollerinit

Initialize a Scroller structure for use.

Syntax

void scrollerInit(

Scroller* s, Pointer to Scroller structure to use
scrollerInfo* si, Pointer to scrollerinfo structure

WORD baseSprite, Base sprite # to use
BYTE basePalette, Base palette # to use

short posX, Scroller initial X position
short posY) Scroller initial Y position
Explanation

Initialize and prepare a Scroller element for use.
Scroller will be set up with provided initial scroll positions.
Will reset related sprites shrink factor to OxOfff (full size).

Note: do not use negating scroll positions, this will display junk on screen and hog the CPU. If you want
to introduce a scrolling plane starting offscreen, add an empty lead-in screen to your picture file.

Return value
N/A

51

scrollerSetPos

Initialize a Scroller structure for use.

Syntax

void scrollerInit(

Scroller* s, Pointer to Scroller structure to use
short toX, Scroller X position

short toY) Scroller Y position

Explanation

Initialize and prepare a Scroller element for use.
Updates scroll positions to provided values.

Note: do not use negating scroll positions, this will display junk on screen and hog the CPU. If you want

to introduce a scrolling plane starting offscreen, add an empty lead-in screen to your picture file.

Return value
N/A

52

Animated sprites components

aSprite

Runtime handler for an animated sprite.

Syntax

typedef struct aSprite {

WORD baseSprite;
WORD basePalette;
short posX;

short posY;

short currentStepNum;
short maxStep;
sprFrame* frames;
sprFrame* currentFrame;
animation* anims;
animation* currentAnimation;
animStep* steps;
animStep* currentStep;
DWORD counter,;

WORD repeats;

WORD currentFlip;
WORD tileWidth;

WORD animlD;

WORD flags;

} aSprite;

Explanation
This is the base structure the library uses to handle animated sprites elements.
Has to be allocated in the ram section of your code.

Base sprite # used for this animated sprite
Base palette # used for this animated sprite
Animated sprite current X position
Animated sprite current Y position

Current step number

Max step # of current animation

Unused / deprecated

Pointer to current frame data

Pointer to animations block

Pointer to current animation

Pointer to steps block os current animation
Pointer to current step

Frame update counter - internal

Number of repeats done

Current flip mode

Width of current frame, tiles unit

ID of current animation

Flags - internal

As operation on this datatype is managed by the library, it is strongly advised to use as read only in your

code.

When animation has reached its end (when applicable), counter value will change to Oxffffffff.

53

spritelnfo, animation, animStep, sprFrame

Structures holding animated sprites informations.

Syntax

typedef struct spritelnfo {
WORD palCount;
WORD frameCount;
WORD maxWidth;
animation* anims;

} spritelnfo;

typedef struct animation {
WORD stepsCount;
WORD repeats;
animStep* data;
struct animation* link;
} animation;

typedef struct animStep {
sprFrame* frame;
short shiftX;
short shiftY;
short duration;

} animStep;

typedef struct sprFrame {
WORD tileWidth;
WORD tileHeight;
WORD colSize;
WORD* mapsl[4];

} sprFrame;

Explanation

Number of required color palettes

Total number of frames

Maximum width, tiles unit (width of the largest frame)
Pointer to animations block

Number of animation steps for this animation
Number of repeats for this animation

Pointer to steps block

Pointer to linked animation

Pointer to frame info

Frame X displacement from origin
Frame Y displacement from origin
Number of frame to display

Frame width, tiles unit
Frame height, tiles unit.

Words size of each sprite tilemap (basically tileHeight*2)
Pointers to frame tilemaps (standard, flipX, flipY, flipXY)

spritelnfo, animation, animStep and sprFrame structures are generated by the buildchar and animator
tools. Holds infos about animated sprite frames and animations.

Frame tilemap pointers are always valid. IE if you did not request flipX for that sprite in the buildchar
tool, maps[1] will point to the standard map.

Frame tilemaps size (WORD) are (tileWidth*tileHeight)*2.

54

aSpriteAnimate

Animates an animated sprite.

Syntax
void aSpriteAnimate(
aSprite* as) Pointer to aSprite structure

Explanation

Updates the animated sprite animation.

Will apply position/flip/animation changes and queue required data on draw lists for update next vblank.
This function must be called every frame for each animated sprite for proper animation.

Return value
N/A

55

aSpriteFlip

Sets flip mode of an animated sprite.

Syntax

void aSpriteFlip(

aSprite* as, Pointer to aSprite structure
WORD flip) Desired flip mode
Explanation

Change animated sprite flip mode.

Flip modes most be specified in your chardata.xml file for the buildchar tool to make them available.
Will default to base orientation if requested flip mode isn’t available.

Will not update the display directly, use aSpriteAnimate afterward to apply changes.

Return value
N/A

56

aSpriteHide

Hides an animated sprite (macro).

Syntax
void aSpriteHide(
aSprite* as) Pointer to aSprite structure

Explanation

Flag the designated aSprite as no display.

When flagged as no display, animated sprites will no longer be displayed. This allows to keep animating
an offscreen/hidden object withut having to display it.

Note: If the aSprite is currently used in allocated mode, you must manually clear the sprites used by the
current frame => clearSprites(as->baseSprite, as->tileWidth);

Return value
N/A

57

aSpritelnit

Initialize an aSprite structure for use.

Syntax

void aSpritelnit(

aSprite* as, Pointer to aSprite structure to use
spritelnfo* si, Pointer to spritelnfo structure
WORD baseSprite, Base sprite # to use

BYTE basePalette, Base palette # to use

short posX, aSprite initial X position

short posY, aSprite initial Y position

WORD anim, aSprite initial animation sequence
WORD flip) aSprite initial flip mode
Explanation

Initialize and prepare an aSprite element for use.
aSprite will be set up with provided initial position/animation/flip.

This function will not push frame to display, a call to aSpriteAnimate is required after aSpritelnit to push

initial frame on display upon next vblank.
Will reset related sprites shrink factor to OxOfff (full size).

Return value
N/A

58

aSpriteMove

Updates position of an animated sprite.

Syntax

void aSpriteMove(

aSprite* as, Pointer to aSprite structure
short shiftX, X shift value

short shiftY) Y shift value

Explanation

Change animated sprite screen position.
New position is determined relatively to current position (new pos= current pos + shift).
Will not update the display position directly, use aSpriteAnimate afterward to apply changes.

Return value
N/A

59

aSpriteSetAnim

Sets animation for an animated sprite.

Syntax

void aSpriteSetAnim(

aSprite* as, Pointer to aSprite structure
WORD anim) Animation 1D

Explanation

Change current animation.

Animation ID are defines issued by the animator tool, see documentation for syntax.

Will not push frame to display, use aSpriteAnimate afterward to apply changes.

If requesting change to the animation sequence ID that is already running, nothing will be done.

About animation links:

When using linked animations (ie A > B > C (loop)) system will remember “A” as last requested animation
ID.

This means if said animated sprite ran long enough to reach animation “C”, a request for animation 1D
“A” will be discarded at this is the sequence already running.

This behavior can be a problem depending on usage and how well you plan your animations sequences.
In the case you want to force a sequence rewind, alter the animlID field before calling aSpriteSetAnim
to trick it out:

myaSpite.animID=0xffff; /* unlikely you did that many animations, should

be an unused ID */
aSpriteSetAnim(&myaSprite,DUMMY_IDLE); /* sets sequence */

Return value
N/A

60

aSpriteSetPos

Sets position for an animated sprite.

Syntax

void aSpriteSetPos(

aSprite* as, Pointer to aSprite structure
short newX, New X position

short newY) New Y position
Explanation

Change animated sprite screen position.
Will not update the display position directly, use aSpriteAnimate afterward to apply changes.

Return value
N/A

61

aSpriteShow

Shows back an animated sprite (macro).

Syntax
void aSpriteShow(
aSprite* as) Pointer to aSprite structure

Explanation
Removes the no display flag from the designated aSprite.
Returns the aSprite to its normal state, allowing it to be displayed again.

Return value
N/A

62

Sprite Pools components

spritePool

Runtime handler for a sprite pool.

Syntax

typedef struct spritePool {
WORD poolStart; Fist sprite # used for this sprite pool
WORD poolEnd; Last sprite # used for this sprite pool
WORD poolSize; Sprite pool size
WORD way; Current draw direction
WORD currentUp; Internal use
WORD currentDown; Internal use

} spritePool;

Explanation

This is the base structure the library uses to handle sprite pools elements.
Has to be allocated in the ram section of your code.

As operation on this datatype is managed by the library, it is strongly advised to use as read only in your

code.

Way is either WAY_UP or WAY_DOWN.

63

spritePoolClose

Finalize sprite pool operations for display.

Syntax
void spritePoolClose(
spritePool *sp) Pointer to spritePool structure

Explanation

Prepares a sprite pool for next VBlank.

Needs to be called before each Vblank, will switch pool direction and queue the necessary sprite clears
for correct display.

Note: Sprite pool passed to this function is not to be used before next Vblank has occurred.

Return value
Will return 1 when draw operations exceeded total pool size, O otherwise.

64

spritePoolDrawList

Draws the supplied animated sprites list into sprite pool.

Syntax

void spritePoolDrawList(

spritePool *sp Pointer to spritePool structure
void *list) Pointer to draw list
Explanation

Utilize the supplied sprite pool to render the aSprite items in the supplied list.
This function takes care of updating the animation state, then display the updated item.

Notes: User must supply a list pointer according to the current direction of the sprite pool :
0 WAY_UP: list must point to the first item, list will be read upward until null is found
O WAY_DOWN: list must point to the last+1 element, list will be read downward until null is
found

This function isn’t interrupt safe.

Return value
N/A

65

spritePoollnit

Initialize the supplied sprite pool handler.

Syntax

void spritePoolInit(

spritePool *sp, Pointer to spritePool structure
WORD baseSprite, Startig sprite of sprite pool
WORD poolSize) Sprite pool size

Explanation

Sets up the supplied sprite pool handler for use.

This function will issue a sprite clear of sprites baseSprite to baseSprite+poolSize-1.

Return value
N/A

66

